A Quick Guide To
PERL

This is a Quick reference Guide for PERL 5.8.6 programming.
Perl definition is given by its creator, Larry Wall: “Perl is a
language to get your job done” and he added “There is more
than one way to do it”!

This guide is not exhaustive, its purpose is to give a few
essential reminder to the Perl syntax, but basic knowledge of
Perl programming is required.

To find help about a Perl function or keyword use perldoc:

perldoc -f split
perldoc -q FAQkeyword

For more information about Perl in general see:
http://www.perl.org

References
For more information on Perl syntax you can refer to O’Reilly’s
book “Programming Perl, 3rd edition”.

Structure of a Perl script
#1/usr/bin/perl

first line of a Perl script”
statement list
exit 0; last line (optional)

"which perl gives the path to the Perl executable
(could be /ust/local/bin/perl)

Variables Scalars ($)

In Perl the variables are not strictly typed (no integer, char,
float, reference, objects etc...) This is a strength and a weakness
of Perl.

$var = “any content”; assign a string

$value = 42; assign a number

($a, $b,$c)=(41,42,"Jo"); assign several scalars at once
($1t, $rt)=($rt,$1lt); swap values

my $var; declare a variable as local
lexically

our $var; declare a variable as global
lexically

local $var; declare a variable as local
dynamically

Variables Arrays (or Lists) (@)
Array or lists is an indexed collection of values, the first index
starts at position zero.

@var=(“aa”,“bb",“cc”); assign an array of 3 elements
print $var[0]; print scalar “aa”

print $var[l]; print scalar “bb”

add an element to @var (right)
remove last element of @var

push(@var, $new);
$getr=pop (@var);

(right)
unshift(@var, $new); add an element to @var (left)
$getl=shift(@var); remove first element of @var
(left)

@rvar=reverse(@var); return the reverse order of the
elements of @var

@svar=sort(@var); return the sorted elements of @var
(string sort)

split (/PATTERN/, $var); change a string to a list of elements
split by a ‘PATTERN’

join(“MOTIF”, @var); join elements of @var with a
‘MOTIF’ to form a single string

$size = @var; $size contains the number of
elements of the array @var

Variables Hashes (%)
A hash is a structure where a key is associated to a value

svar = (“red”=>x0000FF, assign values to 3 hash elements
“blue”=>xFF0000,
“green”=>x00FF00);

print $var{“red”}; contain value x0000FF = 255
$var{“yellow”}=xFFFF00; add a new hash element

@ex = %var; convert hash to array

svar = Qex; convert array to hash

print keys(%var); give the list of keys for the %var
print values(%var); give the list of values for the %var
print each(%var); same as values

delete $var{“yellow”} delete the hash element

Special Variables
Perl has a large collection of special variables. Here is a short
extract.

$ default input

e in a subroutine contains the list of
arguments

$$ process ID

$/ record separator (default = \n)

se eval error or exception

@ARGV contain arguments of the

command-line

$ARGV[O0] first argument

SENV contain environment variables

@INC contain list of directories for
modules to import

Control Operators

&& || ! logical AND, OR and NOT
< > <= >= = == <=> numerical comparison

1t gt le ge ne eq cmp string comparison
Example:

if ($var == 42) { print “$var is numeric”;}

elsif ($var eq “XLII”) { print “$var is a string”;}
else {print “$var is not equal to 42";}

Generally:

if (exprl) { if exprl is true execute 1istl
statement listl

}
elsif (expr2) { else if expr2 is true execute list2
statement list2 (can have many elseif)

}
else { else executes 1ist3
statement 1list3
}
statement if (expr) reverse if, execute statement if

expr is true (also with unless,
while, until)
unless(expr) { execute statement unless expr is
statement list true, handle elsif and else (like if)
}
Loops
while(expr) {
statement list

repeat statement while expr is true

}

do { repeat statement until expr is true
statement list

} until(expr)

for(init; expr; incr){ repeat statement a certain number
statement list of times

}

last; end loops (while, for, etc...)
next; jump to next item in the loop
redo; restart loop with current item

Example: prints 1 to 10
for($i=1;$i<=10;$i++){

print “$i\n”;
}
Example: prints each element of array @list
foreach $index (@list){

print $index;

}

Subroutines, example:
sub add_it {
local ($a,$b)=@_;
Svar = $a+$b;
return $var;

}
$result = &add_it(3,5);

create a subroutine
get arguments
sum the values
return the result

call subroutine with arguments,
$result contains 8.

File Operators
open HANDLE, filename
close HANDLE
Example:
open (FH, “filename”);
while (<FH>) {

Stext .= $_;
}

close(FH);
open(FH, “>filename”);
open(FH, “>>filename”);

Example:
open(FH, “ls -1 |");

while (<FH>) {
sfilelist .= $_;

open a file Handler
close a file Handler

open file filename for reading
read each record (line) and store in §_
concatenate $_ in $text

close filehandle, $text contains the
content of file filename

open filename for output in write
open filename for output in
concatenate

pipe allow to grab command-line
output
read and store the output of “Is -1”

}

Special Handlers

<STDIN> read from standard input (usually
keyboard)

<STDOUT> write to standard output (usually
screen)

<STDERR> write to standard error (usually
screen)

File Tests

if (-e s$filename) { open(READ, $filename); }

Some possible tests:
-r

-w

=X

-o

-e

-2

-s

-f

-d

-1

-T

-A

@var=stat ($filename);

readable

writable
executable

belong to user
exist

zero size (file exist)
nonzero size

file

directory

symlink

text file

accessed in days
get full info on files

String Functions
Svar="my"x4;
$Snew=$var.S$var;

$var contains “mymymymy”
concatenate 2 strings

$var.=$new; assign & concatenate, same as
$Svar=$var. $new;
chop ($var); delete last char of $var

chomp ($var); delete \n if last char of $var

$c=substr($var,3,5); get 5 characters of string $var
starting from position 3.

print “Hello world\n”; printa string

printf(“%10s %4d $%5.2f\n”, s,Si,Sr);
similar as “C/C++” print
formatting

System calls
system(“ls -1"); execute a system command and
continue the current Perl script
execute a system command and

quit the current Perl script

exec(“rm tmp”);

Regular Expressions
Please use the QuickGuide to Perl Regular Expressions in the
same series.

Perl modules

http://www.cpan.org CPAN repository for Perl
modules.

preload a module or pragma at
compilation time

preload a module at execution
time

Perl looks for the real name of the module “Mymodule.pm”

use Mymodule;

require Mymodule;

This document was written and designed by Laurent Falquet
and Vassilios Ioannidis from the Swiss EMBnet node and being
distributed by P&PR Publications Committee of EMBnet.

EMBnet - European Molecular Biology Network - is a
bioinformatics support network of bioinformatics support
centers situated primarily in Europe. Most countries have a
national node which can provide training courses and other
forms of help for users of bioinformatics software.

You can find information about your national node from the
EMBnet site:

http://www.embnet.org/

A Quick Guide To PERL
First edition © 2005

